
Bulletin of the IEEE Technical Committee on Learning Technology, Volume 18, Number 2/3, 2016 6 

  
Abstract—We use decision trees to build a helpdesk agent 

reference network to facilitate the on-the-job advising of junior 
or less experienced staff on how to better address 
telecommunication customer fault reports. Such reports generate 
field measurements and remote measurements which, when 
coupled with location data and client attributes, and fused with 
organization-level statistics, can produce models of how support 
should be provided. Beyond decision support, these models can 
help identify staff who can act as advisors, based on the quality, 
consistency and predictability of dealing with complex 
troubleshooting reports. Advisor staff models are then used to 
guide less experienced staff in their decision making; thus, we 
advocate the deployment of a simple mechanism which exploits 
the availability of staff with a sound track record at the helpdesk 
to act as dormant tutors. 
 

Index Terms— customer relationship management; decision 
trees; knowledge flow graph  

I. INTRODUCTION 
ustomer satisfaction is a key factor in making clients loyal 
to a service provider [1]. In telecommunications, this is 

closely linked to the time it takes to fix a problem and the way 
a fault request is handled. Long-term customers are considered 
more loyal to a brand and usually cost less to serve [2][3]. 

Big telecommunication organizations have adopted 
Standard Operating Procedures (SOPs) and Key Performance 
Indicators (KPIs) to help guide their policies in servicing 
customer fault complaints. 

SOPs are guidelines to be followed by engineers, to help 
them decide how to solve a particular problem. SOPs are 
usually combinations of rules and decision trees [4][5] and 
constitute an integral part of staff training. 

KPIs are numeric indices which attempt to capture aspects 
of service quality (as perceived by the customer or by the 
organization) and are usually expressed in terms of average 
request handling speed, percentage of problems solved 
remotely, or repeated complaint rates. Though a KPI may be 
straightforward to define and to measure, relating it to soft 
attributes of service provision is an elusive task. For example, 
being able to conclude a job on time is an obvious target for a 
maintenance engineer, and so is the ability to draw as few 
organizational resources as possible for any particular task. 
Though relating both to cost can also be straightforward, 
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linking them to measures of customer satisfaction can be a 
difficult exercise. For this reason, composite quality indices 
are notoriously difficult to define and are subject to 
painstaking secrecy and to simplifications [6]. 

SOPs and KPIs are usually deployed at two levels of 
support: Remote (phone) Support, which handles all incoming 
complaints and calls, and On-Site Service with field 
technicians, who work on the landline network. The decision 
to deploy On-site Support while already providing Remote 
Support is sometimes a function of the Remote Support 
technician's experience, workload, mental situation and agility 
and either approach has to be judged based on the average cost 
each of them incurs on the company, all of which are also 
functions of time. 

The element of cost is captured by the Operational Expense 
(OPEX) formulation, where one assumes that a complaint 
remotely resolved costs less, is resolved faster and still keeps 
customer experience at a satisfactory level. With OPEXOS 
standing for OPEX for On Site Support at 1, OPEXRS for 
Remote resolution Service is OPEXOS/n , with typical values 
of n > 10 (details are business confidential). 

The complexity of making support-related decisions on 
time, with pressure and with acceptable consistency with 
organizational policies on customer support and cost 
containment, cannot be overstated. As training is a key to 
improvement, this paper puts forward an unconventional 
approach, based on the on-the-fly identification of key 
personnel who can temporary act as advisors to their peers in a 
discreet, non-intrusive fashion. 

The contribution of this article is two-fold. First, we use 
decision trees to identify inconsistencies in the cost incurred 
when dealing with customer complaints; we interpret such 
inconsistencies as a measure of the ability of the company to 
deliver an as-uniform-as-possible customer experience in 
complaint troubleshooting. Then, we use these inconsistencies 
to rank helpdesk agents who troubleshoot customer 
complaints; this generates a knowledge hierarchy that is 
dynamically updated based on identifying personnel who can 
advise or who need to be advised. 

The work serves as a bridge between the formality of logic 
that is inherent in expressing SOPs and the inherent vagueness 
as regards what is the "best" way to resolve a particular 
customer complaint. It also advances the state of the practice 
in the customer relationship management (CRM) genre [7], 
where what little has been done until recently [8][9][10] as 
regards customer complaints, mainly focuses on knowledge 
about the value of the client (instead of complaint resolution). 
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II. DECISION TREES AND ADVISOR FLOW GRAPHS 
For our case study, we selected a small group of Remote 

Support agents (technicians), who operated under the 
supervision of one of the co-authors, and recorded their 
measurements as attributes for Internet and TV complaints 
instances. Each instance corresponds to an Internet or IPTV 
(Internet Protocol TV) over-xDSL complaint, where we record 
synchronization between the Integrated Access Device and the 
Central Office routers, in addition to other copper-related 
metrics. For these agents, we also recorded whether they 
handled the complaint at the helpdesk level or referred it to On 
Site Support. One aims at maximizing the number of issues 
resolved remotely, without having to resort to On Site 
Support. Though this makes obvious sense from a financial 
point of view, it is not trivial; sub-standard problem resolution 
generates recurring complaints, which may or may not be 
dealt by the same agent next time, thus raising costs (which is 
seldom the case for the more expensive On Site Support). 

The training set we use to build a decision tree, using the 
C4.5 algorithm [4], looks like the one shown in Table I. 

 

 
 
The training set was made up of about 1,500 helpdesk 

reports, recorded over a period of about 3 weeks, by 
automatically logging data collected at distributed corporate 
information systems, for 5 helpdesk agents. The integrated 
data set has been generated by combining those data together. 

A. Cost-oblivious decision trees 
For the base-level experiment we treat individual agents as 

attributes. We have used RWeka and R for analyzing the data 
and building the models. Running a 10-fold cross-validation 
delivered an accuracy of 69.67% of predicting whether the 
complaint would be resolved at the on-site or at the remote 
level. Fig. 1 shows a snapshot of the decision tree; the (dark) 
multi-valued AGENT attribute appears at all nodes near the 
tree root and, clearly, should be avoided in any (agent-

agnostic) SOP. Dropping that attribute along with the AREA 
attribute (agents service requests from a central location which 
may better resolved just by knowing singularity aspects of the 
actual physical network) resulted in an accuracy of 60.65%. 

 

 

 
Fig. 1.  A decision tree using all data labels - agent as a decision node. 

 
We then use the data sets of individual agents to develop 

decision trees which capture how each agent treats a customer 
complaint as well as a measure of treatment uniformity. The 
measurement is based on partitioned data sets which are cross-
tested [11]. We partition the overall complaints data set into 
groups, according to how complaints were assigned to agents 
and examine whether the problem resolution practices of one 
agent apply to customer complaints handled by another agent. 
On one hand, this approach allows us to see how each agent's 
decision model is (or is not) compatible with other agents' 
models. On the other hand, however, it also allows us to 
consider model differences compared not to a theoretical 
maximum of 1 but to a practical maximum as calculated by 
the re-classification error of each agent's model. 

 

 
 
Cross-test results among all available agents are shown in 

Table II. Therein, each <i;i> entry (on the main diagonal) 
refers to the re-classification testing accuracy; note that these 
numbers are not even close to 1 (suggesting an inherently hard 
problem) and that the relative standard deviation (RSD) is 
0.1049 (indicating small differences in how each agent re-
classifies the training data generated by him/herself and 
concurring with Fig. 1, where the agent attribute seems to 
dominate the differences in how a problem is dealt with). Each 
<i;j> entry describes an experiment where data for the i-th 
agent is used to build a decision tree which is subsequently 
tested on data for the j-th agent.  

TABLE II 
CORRECTLY CLASSIFIED INSTANCES - CROSS-TEST RESULTS 

 1 2 3 4 5 

1 0.60 0.38 0.48 0.54 0.50 
2 0.49 0.72 0.56 0.50 0.42 
3 0.49 0.66 0.60 0.50 0.42 
4 0.54 0.67 0.52 0.75 0.61 
5 0.50 0.47 0.52 0.53 0.71 

      
 

TABLE I 
A SNAPSHOT OF A TRAINING SET 

Agent Product Area Profile Sync Max Dist State 

… … … … … … … … 
AGENT04 INTERNET Athens 2 2048 9138 2.7 OS 
AGENT02 INTERNET Patras 30 26421 27786 1.8 RS 
AGENT03 INTERNET Athens 24 2045 3408 3.1 OS 

… … … … … … … … 
        

State is the class variable (showing the type of support, On-Site/Remote). 
Product refers to the service a client has bought and for which service the 

complaint is being lodged.  
Area refers to the city where the fault occured.  
Profile refers to the nominal speed of the connection for that client (not 

the actual capacity of the line, but the service capacity; for example, a low-
cost client might buy a 2 Mb/s service even though the line might 
accommodate much larger speeds).  

Sync refers to the actual synchronization speed of a client's line.  
Max refers to the theoretical maximum attainable synchronization of a 

client's line based on signal strength, attenuation, and a variety of physical 
characteristics.  

Dist refers to the copper cable length from the central circuit 
infrastructure (measured in km). 



Bulletin of the IEEE Technical Committee on Learning Technology, Volume 18, Number 2/3, 2016 8 

B. Cost-sensitive decision trees 
A cost-matrix that captures the differences between 

misclassifying customer complaints as requiring On Site 
Support vs Remote Resolution Service is: 
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This is not a conventional misclassification cost matrix 

[12]; we actually note the cost incurred to carry out some 
maintenance activity, while we choose to ignore the cost of 
that activity when the model correctly predicts the class label 
(of the maintenance activity). So, when an On Site instance is 
correctly classified by our model, we assign it a cost of 0, 
though it incurs a cost of OPEXOS to resolve; instead, we 
reserve the cost of OPEXOS only for those instances which our 
model classifies as On Site though the class label in the data 
set reads Remote. Cross-testing agents with the above cost 
perspective is shown in Table III. 

 

 
The RSD along the main diagonal now stands at 0.7071 and 

raises the question why agents fare so differently when asked 
to classify the very data they were trained on, while also 
highlighting substantial cost differences between agents, when 
some of them are used to classify data used by other agents. 

It might seem that an agent may be unfairly penalized for 
handling a majority of serious complaints requesting on-site 
maintenance. We note that complaints are assigned to agents 
randomly (for example, we do not pick experienced agents to 
deal with frustrated customers); as a result, one expects that, 
on average, hard and easy problems are uniformly allocated. 
Moreover, any performance review will no doubt also focus 
on how specific complaints were dealt with; our technique at 
this point mainly serves to highlight inconsistencies in dealing 
with customer problems and not the actual cost of the 
maintenance approach (as a result, the question of why two 
particular agents performed a different classification on a 
similar set of complaints is of relatively less importance). 

So, incorporating the cost aspect into the decision tree 
classifier allowed us to build agent-aligned models and show 
how these scale up to new data sets. To stress how traditional 
techniques provide rather just crude clues, note that traditional 
KPI-based agent monitoring usually consists of at least 2 
indices per agent. Table IV reports on the conventional cost 
index for each agent (using actual values for two real KPI 
indices; their names as well as the formula to calculate the 
composite cost index are withheld due to commercial secrecy 
but, as most KPI indices, they do bear some relation with the 

effectiveness of complaint resolution, also taking into account 
recurring complaints). We now observe an RSD of a mere 
0.0219; this clearly suggests that traditional indices grossly 
hide differences. 

 

 
Table V finally reviews our experiments (ordered by 

increasing ability to tell agents apart in terms of performance). 
 

 
C. Advisor Flow Graph: just-in-time collaborative training 
Since some agents' models seem to be better suited when 

classifying hereto un-seen instances, it might be reasonable to 
ask those agents to serve as advisors for their colleagues. 
Though organizational level training involves the review of 
past cases as well as helpdesk tactics (how to use one's 
communication skills, for example), the helpdesk data analysis 
models can serve as on-the-spot training; when an agent 
addresses a troubleshooting report, it makes sense to offer 
him/her an alternative approach to the same problem. It is 
crucial to present that advice as a hint and not as a 
recommendation to be followed; since the actual classification 
problem is very difficult on its own, any advice that sounds 
too firm might be easily resisted on grounds of just a 
counterexample (and, as we have seen, these do occur). 

To capture a picture of which agent can help a colleague, 
we draw an advisor flow graph, where at source nodes we 
place those agents with "better" models, whereas agents who 
seem to act with increased misclassification costs are placed at 
destination nodes. Table III is used to build the advisor flow 
graph shown in Fig. 2, using Equation 2 for the corresponding 
adjacency and weight matrix. The semantics of the advisor 
flow graph are straightforward, with larger edge weights 
reflecting larger quality differences in the corresponding 
cross-tested models, according to Equation 2. For clarity 
purposes, we have drawn the graph in three levels to denote 
that the top level nodes are source-only nodes whereas the 
bottom level nodes are destination-only nodes. For our 
example, Agent 3 should consult Agents 1, 4 or 5, before 
deciding, whereas Agent 2 might also consult Agent 3, should 
the others be unavailable (a pop-up window describing an 
alternative action and the justification could suffice). 
 

TABLE V 
COMPARISON OF TECHNIQUE RESOLUTION 

Table  RSD 

4 Cost using Traditional KPIs   0.022 
2 Correctly Classified Instances only 0.105 
3 Average Misclassification Cost  0.707 

   
 

TABLE IV 
TRADITIONAL KPIS AND COST EVALUATION 

Agenti KPI1 KPI2 AGENTCOST 

1 0.30 0.44 0.72 
2 0.20 0.42 0.69 
3 0.14 0.39 0.69 
4 0.25 0.46 0.68 
5 0.25 0.44 0.69 

    
 

TABLE III 
AVERAGE MISCLASSIFICATION COST 

 1 2 3 4 5 

1 0.1 0.1 0.1 0.1 0.2 
2 0.5 0.3 0.4 0.5 0.6 
3 0.5 0.3 0.4 0.5 0.6 
4 0.1 0.1 0.2 0.1 0.1 
5 0.2 0.1 0.1 0.1 0.1 
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Fig. 2.  An advisor flow graph showing the flow of information. 

III. CONCLUSIONS AND FUTURE WORK 
We identify helpdesk agents capable of on-the-job advising 

their colleagues, using cost-sensitive decision tree models of 
how agents deal with customer complaints. These decision 
trees pinpoint agent differences and help build a graph to 
capture possible advice flows between agents. These advice 
flows are, essentially, by-products of standard data mining 
activities and can be used as non-intrusive on-the-job 
recommendation, suitable not only for decision making but 
also for reflection. 

An advisor graph is a dynamic knowledge hierarchy [13] 
and captures the implicit reputation enjoyed by members of a 
community of practice, even though such knowledge may be 
implicit (and volatile). This is relevant to leader selection via 
clustering as performed in swarm-based optimization 
problems [14], where leaders help balance quality and 
diversity; in our case, this refers to organizational goals of 
effectiveness and efficiency. An advisor graph can gracefully 
scale up with the number of agents as its calculation can be 
carried out off-line; subsequently, selecting who-advises-
whom is performed by selecting any of the available source 
nodes for a particular destination node. It can also scale up 
with the number of attributes recorded for each complaint; it is 
not unnatural to enhance each record with some agent-specific 
attributes so that agent similarities may be detected and 
exploited across a variety of other criteria (note, however, that 
recording data such as agent age, sex, education background, 
etc. can ran contrary to law and/or organizational regulations, 
which is why, for the context of our case study, we have 
limited data collection to the business-specific domain only).  

Knowledge volatility issues arise as the advisor graph 
changes over time, due to the variability of the troubleshooting 
activities or to the helpdesk agents. We expect that, for an 
application, one might decide to analyze medium-sized agent 
groups and a larger time window. Establishing the right 
combination of group size and time window will likely be a 
difficult problem and, for all practical purposed, should 

probably be tackled on a trial-and-error basis. 
Simply put, the contribution of this article is the use of 

decision trees as a classification mechanism and as a 
knowledge transfer mechanism for helpdesk technicians. But, 
while it may be easy to build the advisor graph, deploying it 
and monitoring how it evolves and how it actually improves 
quality of service is a key part of our agenda to close the loop 
between monitoring and acting, via peer-training. 
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